Metamath Proof Explorer


Theorem fsetex

Description: The set of functions between two classes exists if the codomain exists. Generalization of mapex to arbitrary domains. (Contributed by AV, 14-Aug-2024)

Ref Expression
Assertion fsetex
|- ( B e. V -> { f | f : A --> B } e. _V )

Proof

Step Hyp Ref Expression
1 mapfset
 |-  ( B e. V -> { f | f : A --> B } = ( B ^m A ) )
2 ovex
 |-  ( B ^m A ) e. _V
3 1 2 eqeltrdi
 |-  ( B e. V -> { f | f : A --> B } e. _V )