| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
|- m e. _V |
| 2 |
|
feq1 |
|- ( f = m -> ( f : A --> B <-> m : A --> B ) ) |
| 3 |
1 2
|
elab |
|- ( m e. { f | f : A --> B } <-> m : A --> B ) |
| 4 |
|
simpr |
|- ( ( m : A --> B /\ B e. V ) -> B e. V ) |
| 5 |
|
dmfex |
|- ( ( m e. _V /\ m : A --> B ) -> A e. _V ) |
| 6 |
1 5
|
mpan |
|- ( m : A --> B -> A e. _V ) |
| 7 |
6
|
adantr |
|- ( ( m : A --> B /\ B e. V ) -> A e. _V ) |
| 8 |
4 7
|
elmapd |
|- ( ( m : A --> B /\ B e. V ) -> ( m e. ( B ^m A ) <-> m : A --> B ) ) |
| 9 |
8
|
exbiri |
|- ( m : A --> B -> ( B e. V -> ( m : A --> B -> m e. ( B ^m A ) ) ) ) |
| 10 |
9
|
pm2.43b |
|- ( B e. V -> ( m : A --> B -> m e. ( B ^m A ) ) ) |
| 11 |
|
elmapi |
|- ( m e. ( B ^m A ) -> m : A --> B ) |
| 12 |
10 11
|
impbid1 |
|- ( B e. V -> ( m : A --> B <-> m e. ( B ^m A ) ) ) |
| 13 |
3 12
|
bitrid |
|- ( B e. V -> ( m e. { f | f : A --> B } <-> m e. ( B ^m A ) ) ) |
| 14 |
13
|
eqrdv |
|- ( B e. V -> { f | f : A --> B } = ( B ^m A ) ) |