Metamath Proof Explorer


Theorem mapssfset

Description: The value of the set exponentiation ( B ^m A ) is a subset of the class of functions from A to B . (Contributed by AV, 10-Aug-2024)

Ref Expression
Assertion mapssfset
|- ( B ^m A ) C_ { f | f : A --> B }

Proof

Step Hyp Ref Expression
1 mapfset
 |-  ( B e. _V -> { f | f : A --> B } = ( B ^m A ) )
2 eqimss2
 |-  ( { f | f : A --> B } = ( B ^m A ) -> ( B ^m A ) C_ { f | f : A --> B } )
3 1 2 syl
 |-  ( B e. _V -> ( B ^m A ) C_ { f | f : A --> B } )
4 reldmmap
 |-  Rel dom ^m
5 4 ovprc1
 |-  ( -. B e. _V -> ( B ^m A ) = (/) )
6 0ss
 |-  (/) C_ { f | f : A --> B }
7 5 6 eqsstrdi
 |-  ( -. B e. _V -> ( B ^m A ) C_ { f | f : A --> B } )
8 3 7 pm2.61i
 |-  ( B ^m A ) C_ { f | f : A --> B }