Description: The value of the set exponentiation ( B ^m A ) is a subset of the class of functions from A to B . (Contributed by AV, 10-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | mapssfset | |- ( B ^m A ) C_ { f | f : A --> B } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapfset | |- ( B e. _V -> { f | f : A --> B } = ( B ^m A ) ) |
|
2 | eqimss2 | |- ( { f | f : A --> B } = ( B ^m A ) -> ( B ^m A ) C_ { f | f : A --> B } ) |
|
3 | 1 2 | syl | |- ( B e. _V -> ( B ^m A ) C_ { f | f : A --> B } ) |
4 | reldmmap | |- Rel dom ^m |
|
5 | 4 | ovprc1 | |- ( -. B e. _V -> ( B ^m A ) = (/) ) |
6 | 0ss | |- (/) C_ { f | f : A --> B } |
|
7 | 5 6 | eqsstrdi | |- ( -. B e. _V -> ( B ^m A ) C_ { f | f : A --> B } ) |
8 | 3 7 | pm2.61i | |- ( B ^m A ) C_ { f | f : A --> B } |