Metamath Proof Explorer


Theorem mapssfset

Description: The value of the set exponentiation ( B ^m A ) is a subset of the class of functions from A to B . (Contributed by AV, 10-Aug-2024)

Ref Expression
Assertion mapssfset ( 𝐵m 𝐴 ) ⊆ { 𝑓𝑓 : 𝐴𝐵 }

Proof

Step Hyp Ref Expression
1 mapfset ( 𝐵 ∈ V → { 𝑓𝑓 : 𝐴𝐵 } = ( 𝐵m 𝐴 ) )
2 eqimss2 ( { 𝑓𝑓 : 𝐴𝐵 } = ( 𝐵m 𝐴 ) → ( 𝐵m 𝐴 ) ⊆ { 𝑓𝑓 : 𝐴𝐵 } )
3 1 2 syl ( 𝐵 ∈ V → ( 𝐵m 𝐴 ) ⊆ { 𝑓𝑓 : 𝐴𝐵 } )
4 reldmmap Rel dom ↑m
5 4 ovprc1 ( ¬ 𝐵 ∈ V → ( 𝐵m 𝐴 ) = ∅ )
6 0ss ∅ ⊆ { 𝑓𝑓 : 𝐴𝐵 }
7 5 6 eqsstrdi ( ¬ 𝐵 ∈ V → ( 𝐵m 𝐴 ) ⊆ { 𝑓𝑓 : 𝐴𝐵 } )
8 3 7 pm2.61i ( 𝐵m 𝐴 ) ⊆ { 𝑓𝑓 : 𝐴𝐵 }