Description: The value of the set exponentiation ( B ^m A ) is a subset of the class of functions from A to B . (Contributed by AV, 10-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | mapssfset | ⊢ ( 𝐵 ↑m 𝐴 ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapfset | ⊢ ( 𝐵 ∈ V → { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } = ( 𝐵 ↑m 𝐴 ) ) | |
2 | eqimss2 | ⊢ ( { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } = ( 𝐵 ↑m 𝐴 ) → ( 𝐵 ↑m 𝐴 ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ) | |
3 | 1 2 | syl | ⊢ ( 𝐵 ∈ V → ( 𝐵 ↑m 𝐴 ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ) |
4 | reldmmap | ⊢ Rel dom ↑m | |
5 | 4 | ovprc1 | ⊢ ( ¬ 𝐵 ∈ V → ( 𝐵 ↑m 𝐴 ) = ∅ ) |
6 | 0ss | ⊢ ∅ ⊆ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } | |
7 | 5 6 | eqsstrdi | ⊢ ( ¬ 𝐵 ∈ V → ( 𝐵 ↑m 𝐴 ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } ) |
8 | 3 7 | pm2.61i | ⊢ ( 𝐵 ↑m 𝐴 ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 ⟶ 𝐵 } |