Step |
Hyp |
Ref |
Expression |
1 |
|
vex |
|- m e. _V |
2 |
|
foeq1 |
|- ( f = m -> ( f : A -onto-> B <-> m : A -onto-> B ) ) |
3 |
1 2
|
elab |
|- ( m e. { f | f : A -onto-> B } <-> m : A -onto-> B ) |
4 |
|
fof |
|- ( m : A -onto-> B -> m : A --> B ) |
5 |
|
forn |
|- ( m : A -onto-> B -> ran m = B ) |
6 |
1
|
rnex |
|- ran m e. _V |
7 |
5 6
|
eqeltrrdi |
|- ( m : A -onto-> B -> B e. _V ) |
8 |
|
dmfex |
|- ( ( m e. _V /\ m : A --> B ) -> A e. _V ) |
9 |
1 4 8
|
sylancr |
|- ( m : A -onto-> B -> A e. _V ) |
10 |
7 9
|
elmapd |
|- ( m : A -onto-> B -> ( m e. ( B ^m A ) <-> m : A --> B ) ) |
11 |
4 10
|
mpbird |
|- ( m : A -onto-> B -> m e. ( B ^m A ) ) |
12 |
3 11
|
sylbi |
|- ( m e. { f | f : A -onto-> B } -> m e. ( B ^m A ) ) |
13 |
12
|
ssriv |
|- { f | f : A -onto-> B } C_ ( B ^m A ) |