Metamath Proof Explorer


Theorem mapfoss

Description: The value of the set exponentiation ( B ^m A ) is a superset of the set of all functions from A onto B . (Contributed by AV, 7-Aug-2024)

Ref Expression
Assertion mapfoss f | f : A onto B B A

Proof

Step Hyp Ref Expression
1 vex m V
2 foeq1 f = m f : A onto B m : A onto B
3 1 2 elab m f | f : A onto B m : A onto B
4 fof m : A onto B m : A B
5 forn m : A onto B ran m = B
6 1 rnex ran m V
7 5 6 eqeltrrdi m : A onto B B V
8 dmfex m V m : A B A V
9 1 4 8 sylancr m : A onto B A V
10 7 9 elmapd m : A onto B m B A m : A B
11 4 10 mpbird m : A onto B m B A
12 3 11 sylbi m f | f : A onto B m B A
13 12 ssriv f | f : A onto B B A