Step |
Hyp |
Ref |
Expression |
1 |
|
fsumrp0cl.1 |
|- ( ph -> A e. Fin ) |
2 |
|
fsumrp0cl.2 |
|- ( ( ph /\ k e. A ) -> B e. ( 0 [,) +oo ) ) |
3 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
4 |
|
ax-resscn |
|- RR C_ CC |
5 |
3 4
|
sstri |
|- ( 0 [,) +oo ) C_ CC |
6 |
5
|
a1i |
|- ( ph -> ( 0 [,) +oo ) C_ CC ) |
7 |
|
simprl |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> x e. ( 0 [,) +oo ) ) |
8 |
3 7
|
sselid |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> x e. RR ) |
9 |
|
simprr |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> y e. ( 0 [,) +oo ) ) |
10 |
3 9
|
sselid |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> y e. RR ) |
11 |
8 10
|
readdcld |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> ( x + y ) e. RR ) |
12 |
11
|
rexrd |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> ( x + y ) e. RR* ) |
13 |
|
0xr |
|- 0 e. RR* |
14 |
|
pnfxr |
|- +oo e. RR* |
15 |
|
elico1 |
|- ( ( 0 e. RR* /\ +oo e. RR* ) -> ( x e. ( 0 [,) +oo ) <-> ( x e. RR* /\ 0 <_ x /\ x < +oo ) ) ) |
16 |
13 14 15
|
mp2an |
|- ( x e. ( 0 [,) +oo ) <-> ( x e. RR* /\ 0 <_ x /\ x < +oo ) ) |
17 |
16
|
simp2bi |
|- ( x e. ( 0 [,) +oo ) -> 0 <_ x ) |
18 |
7 17
|
syl |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> 0 <_ x ) |
19 |
|
elico1 |
|- ( ( 0 e. RR* /\ +oo e. RR* ) -> ( y e. ( 0 [,) +oo ) <-> ( y e. RR* /\ 0 <_ y /\ y < +oo ) ) ) |
20 |
13 14 19
|
mp2an |
|- ( y e. ( 0 [,) +oo ) <-> ( y e. RR* /\ 0 <_ y /\ y < +oo ) ) |
21 |
20
|
simp2bi |
|- ( y e. ( 0 [,) +oo ) -> 0 <_ y ) |
22 |
9 21
|
syl |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> 0 <_ y ) |
23 |
8 10 18 22
|
addge0d |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> 0 <_ ( x + y ) ) |
24 |
|
ltpnf |
|- ( ( x + y ) e. RR -> ( x + y ) < +oo ) |
25 |
11 24
|
syl |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> ( x + y ) < +oo ) |
26 |
|
elico1 |
|- ( ( 0 e. RR* /\ +oo e. RR* ) -> ( ( x + y ) e. ( 0 [,) +oo ) <-> ( ( x + y ) e. RR* /\ 0 <_ ( x + y ) /\ ( x + y ) < +oo ) ) ) |
27 |
13 14 26
|
mp2an |
|- ( ( x + y ) e. ( 0 [,) +oo ) <-> ( ( x + y ) e. RR* /\ 0 <_ ( x + y ) /\ ( x + y ) < +oo ) ) |
28 |
12 23 25 27
|
syl3anbrc |
|- ( ( ph /\ ( x e. ( 0 [,) +oo ) /\ y e. ( 0 [,) +oo ) ) ) -> ( x + y ) e. ( 0 [,) +oo ) ) |
29 |
|
0e0icopnf |
|- 0 e. ( 0 [,) +oo ) |
30 |
29
|
a1i |
|- ( ph -> 0 e. ( 0 [,) +oo ) ) |
31 |
6 28 1 2 30
|
fsumcllem |
|- ( ph -> sum_ k e. A B e. ( 0 [,) +oo ) ) |