Description: The morphism map of a faithful functor is an injection. (Contributed by Mario Carneiro, 27-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isfth.b | |- B = ( Base ` C ) |
|
isfth.h | |- H = ( Hom ` C ) |
||
isfth.j | |- J = ( Hom ` D ) |
||
fthf1.f | |- ( ph -> F ( C Faith D ) G ) |
||
fthf1.x | |- ( ph -> X e. B ) |
||
fthf1.y | |- ( ph -> Y e. B ) |
||
fthi.r | |- ( ph -> R e. ( X H Y ) ) |
||
fthi.s | |- ( ph -> S e. ( X H Y ) ) |
||
Assertion | fthi | |- ( ph -> ( ( ( X G Y ) ` R ) = ( ( X G Y ) ` S ) <-> R = S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfth.b | |- B = ( Base ` C ) |
|
2 | isfth.h | |- H = ( Hom ` C ) |
|
3 | isfth.j | |- J = ( Hom ` D ) |
|
4 | fthf1.f | |- ( ph -> F ( C Faith D ) G ) |
|
5 | fthf1.x | |- ( ph -> X e. B ) |
|
6 | fthf1.y | |- ( ph -> Y e. B ) |
|
7 | fthi.r | |- ( ph -> R e. ( X H Y ) ) |
|
8 | fthi.s | |- ( ph -> S e. ( X H Y ) ) |
|
9 | 1 2 3 4 5 6 | fthf1 | |- ( ph -> ( X G Y ) : ( X H Y ) -1-1-> ( ( F ` X ) J ( F ` Y ) ) ) |
10 | f1fveq | |- ( ( ( X G Y ) : ( X H Y ) -1-1-> ( ( F ` X ) J ( F ` Y ) ) /\ ( R e. ( X H Y ) /\ S e. ( X H Y ) ) ) -> ( ( ( X G Y ) ` R ) = ( ( X G Y ) ` S ) <-> R = S ) ) |
|
11 | 9 7 8 10 | syl12anc | |- ( ph -> ( ( ( X G Y ) ` R ) = ( ( X G Y ) ` S ) <-> R = S ) ) |