Description: A function with a domain containing (at least) two different elements is not an ordered pair. (Contributed by AV, 21-Sep-2020) (Proof shortened by AV, 9-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fun2dmnop.a | |- A e. _V |
|
| fun2dmnop.b | |- B e. _V |
||
| Assertion | fun2dmnop | |- ( ( Fun G /\ A =/= B /\ { A , B } C_ dom G ) -> -. G e. ( _V X. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fun2dmnop.a | |- A e. _V |
|
| 2 | fun2dmnop.b | |- B e. _V |
|
| 3 | fundif | |- ( Fun G -> Fun ( G \ { (/) } ) ) |
|
| 4 | 1 2 | fun2dmnop0 | |- ( ( Fun ( G \ { (/) } ) /\ A =/= B /\ { A , B } C_ dom G ) -> -. G e. ( _V X. _V ) ) |
| 5 | 3 4 | syl3an1 | |- ( ( Fun G /\ A =/= B /\ { A , B } C_ dom G ) -> -. G e. ( _V X. _V ) ) |