Metamath Proof Explorer


Theorem funALTVeq

Description: Equality theorem for function predicate. (Contributed by NM, 16-Aug-1994)

Ref Expression
Assertion funALTVeq
|- ( A = B -> ( FunALTV A <-> FunALTV B ) )

Proof

Step Hyp Ref Expression
1 eqimss2
 |-  ( A = B -> B C_ A )
2 funALTVss
 |-  ( B C_ A -> ( FunALTV A -> FunALTV B ) )
3 1 2 syl
 |-  ( A = B -> ( FunALTV A -> FunALTV B ) )
4 eqimss
 |-  ( A = B -> A C_ B )
5 funALTVss
 |-  ( A C_ B -> ( FunALTV B -> FunALTV A ) )
6 4 5 syl
 |-  ( A = B -> ( FunALTV B -> FunALTV A ) )
7 3 6 impbid
 |-  ( A = B -> ( FunALTV A <-> FunALTV B ) )