Metamath Proof Explorer


Theorem funALTVeqi

Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypothesis funALTVeqi.1
|- A = B
Assertion funALTVeqi
|- ( FunALTV A <-> FunALTV B )

Proof

Step Hyp Ref Expression
1 funALTVeqi.1
 |-  A = B
2 funALTVeq
 |-  ( A = B -> ( FunALTV A <-> FunALTV B ) )
3 1 2 ax-mp
 |-  ( FunALTV A <-> FunALTV B )