Metamath Proof Explorer


Theorem funALTVeqi

Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypothesis funALTVeqi.1 𝐴 = 𝐵
Assertion funALTVeqi ( FunALTV 𝐴 ↔ FunALTV 𝐵 )

Proof

Step Hyp Ref Expression
1 funALTVeqi.1 𝐴 = 𝐵
2 funALTVeq ( 𝐴 = 𝐵 → ( FunALTV 𝐴 ↔ FunALTV 𝐵 ) )
3 1 2 ax-mp ( FunALTV 𝐴 ↔ FunALTV 𝐵 )