Description: Equivalence of function value and binary relation, analogous to funbrfvb . (Contributed by Alexander van der Vekens, 25-May-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | funbrafvb | |- ( ( Fun F /\ A e. dom F ) -> ( ( F ''' A ) = B <-> A F B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn | |- ( Fun F <-> F Fn dom F ) |
|
2 | fnbrafvb | |- ( ( F Fn dom F /\ A e. dom F ) -> ( ( F ''' A ) = B <-> A F B ) ) |
|
3 | 1 2 | sylanb | |- ( ( Fun F /\ A e. dom F ) -> ( ( F ''' A ) = B <-> A F B ) ) |