Step |
Hyp |
Ref |
Expression |
1 |
|
fndm |
|- ( F Fn A -> dom F = A ) |
2 |
|
eleq2 |
|- ( A = dom F -> ( B e. A <-> B e. dom F ) ) |
3 |
2
|
eqcoms |
|- ( dom F = A -> ( B e. A <-> B e. dom F ) ) |
4 |
3
|
biimpd |
|- ( dom F = A -> ( B e. A -> B e. dom F ) ) |
5 |
1 4
|
syl |
|- ( F Fn A -> ( B e. A -> B e. dom F ) ) |
6 |
5
|
imp |
|- ( ( F Fn A /\ B e. A ) -> B e. dom F ) |
7 |
|
snssi |
|- ( B e. A -> { B } C_ A ) |
8 |
7
|
adantl |
|- ( ( F Fn A /\ B e. A ) -> { B } C_ A ) |
9 |
|
fnssresb |
|- ( F Fn A -> ( ( F |` { B } ) Fn { B } <-> { B } C_ A ) ) |
10 |
9
|
adantr |
|- ( ( F Fn A /\ B e. A ) -> ( ( F |` { B } ) Fn { B } <-> { B } C_ A ) ) |
11 |
8 10
|
mpbird |
|- ( ( F Fn A /\ B e. A ) -> ( F |` { B } ) Fn { B } ) |
12 |
|
fnfun |
|- ( ( F |` { B } ) Fn { B } -> Fun ( F |` { B } ) ) |
13 |
11 12
|
syl |
|- ( ( F Fn A /\ B e. A ) -> Fun ( F |` { B } ) ) |
14 |
|
df-dfat |
|- ( F defAt B <-> ( B e. dom F /\ Fun ( F |` { B } ) ) ) |
15 |
|
afvfundmfveq |
|- ( F defAt B -> ( F ''' B ) = ( F ` B ) ) |
16 |
14 15
|
sylbir |
|- ( ( B e. dom F /\ Fun ( F |` { B } ) ) -> ( F ''' B ) = ( F ` B ) ) |
17 |
6 13 16
|
syl2anc |
|- ( ( F Fn A /\ B e. A ) -> ( F ''' B ) = ( F ` B ) ) |
18 |
17
|
eqeq1d |
|- ( ( F Fn A /\ B e. A ) -> ( ( F ''' B ) = C <-> ( F ` B ) = C ) ) |
19 |
|
fnbrfvb |
|- ( ( F Fn A /\ B e. A ) -> ( ( F ` B ) = C <-> B F C ) ) |
20 |
18 19
|
bitrd |
|- ( ( F Fn A /\ B e. A ) -> ( ( F ''' B ) = C <-> B F C ) ) |