Metamath Proof Explorer


Theorem fnbrafvb

Description: Equivalence of function value and binary relation, analogous to fnbrfvb . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion fnbrafvb
|- ( ( F Fn A /\ B e. A ) -> ( ( F ''' B ) = C <-> B F C ) )

Proof

Step Hyp Ref Expression
1 fndm
 |-  ( F Fn A -> dom F = A )
2 eleq2
 |-  ( A = dom F -> ( B e. A <-> B e. dom F ) )
3 2 eqcoms
 |-  ( dom F = A -> ( B e. A <-> B e. dom F ) )
4 3 biimpd
 |-  ( dom F = A -> ( B e. A -> B e. dom F ) )
5 1 4 syl
 |-  ( F Fn A -> ( B e. A -> B e. dom F ) )
6 5 imp
 |-  ( ( F Fn A /\ B e. A ) -> B e. dom F )
7 snssi
 |-  ( B e. A -> { B } C_ A )
8 7 adantl
 |-  ( ( F Fn A /\ B e. A ) -> { B } C_ A )
9 fnssresb
 |-  ( F Fn A -> ( ( F |` { B } ) Fn { B } <-> { B } C_ A ) )
10 9 adantr
 |-  ( ( F Fn A /\ B e. A ) -> ( ( F |` { B } ) Fn { B } <-> { B } C_ A ) )
11 8 10 mpbird
 |-  ( ( F Fn A /\ B e. A ) -> ( F |` { B } ) Fn { B } )
12 fnfun
 |-  ( ( F |` { B } ) Fn { B } -> Fun ( F |` { B } ) )
13 11 12 syl
 |-  ( ( F Fn A /\ B e. A ) -> Fun ( F |` { B } ) )
14 df-dfat
 |-  ( F defAt B <-> ( B e. dom F /\ Fun ( F |` { B } ) ) )
15 afvfundmfveq
 |-  ( F defAt B -> ( F ''' B ) = ( F ` B ) )
16 14 15 sylbir
 |-  ( ( B e. dom F /\ Fun ( F |` { B } ) ) -> ( F ''' B ) = ( F ` B ) )
17 6 13 16 syl2anc
 |-  ( ( F Fn A /\ B e. A ) -> ( F ''' B ) = ( F ` B ) )
18 17 eqeq1d
 |-  ( ( F Fn A /\ B e. A ) -> ( ( F ''' B ) = C <-> ( F ` B ) = C ) )
19 fnbrfvb
 |-  ( ( F Fn A /\ B e. A ) -> ( ( F ` B ) = C <-> B F C ) )
20 18 19 bitrd
 |-  ( ( F Fn A /\ B e. A ) -> ( ( F ''' B ) = C <-> B F C ) )