Metamath Proof Explorer


Theorem fnopafvb

Description: Equivalence of function value and ordered pair membership, analogous to fnopfvb . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion fnopafvb
|- ( ( F Fn A /\ B e. A ) -> ( ( F ''' B ) = C <-> <. B , C >. e. F ) )

Proof

Step Hyp Ref Expression
1 fnbrafvb
 |-  ( ( F Fn A /\ B e. A ) -> ( ( F ''' B ) = C <-> B F C ) )
2 df-br
 |-  ( B F C <-> <. B , C >. e. F )
3 1 2 bitrdi
 |-  ( ( F Fn A /\ B e. A ) -> ( ( F ''' B ) = C <-> <. B , C >. e. F ) )