Description: Equivalence of function value and ordered pair membership, analogous to fnopfvb . (Contributed by Alexander van der Vekens, 25-May-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | fnopafvb | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝐹 ''' 𝐵 ) = 𝐶 ↔ 〈 𝐵 , 𝐶 〉 ∈ 𝐹 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnbrafvb | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝐹 ''' 𝐵 ) = 𝐶 ↔ 𝐵 𝐹 𝐶 ) ) | |
2 | df-br | ⊢ ( 𝐵 𝐹 𝐶 ↔ 〈 𝐵 , 𝐶 〉 ∈ 𝐹 ) | |
3 | 1 2 | bitrdi | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( ( 𝐹 ''' 𝐵 ) = 𝐶 ↔ 〈 𝐵 , 𝐶 〉 ∈ 𝐹 ) ) |