Metamath Proof Explorer


Theorem fnopafvb

Description: Equivalence of function value and ordered pair membership, analogous to fnopfvb . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion fnopafvb FFnABAF'''B=CBCF

Proof

Step Hyp Ref Expression
1 fnbrafvb FFnABAF'''B=CBFC
2 df-br BFCBCF
3 1 2 bitrdi FFnABAF'''B=CBCF