Metamath Proof Explorer


Theorem fnbrafvb

Description: Equivalence of function value and binary relation, analogous to fnbrfvb . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion fnbrafvb FFnABAF'''B=CBFC

Proof

Step Hyp Ref Expression
1 fndm FFnAdomF=A
2 eleq2 A=domFBABdomF
3 2 eqcoms domF=ABABdomF
4 3 biimpd domF=ABABdomF
5 1 4 syl FFnABABdomF
6 5 imp FFnABABdomF
7 snssi BABA
8 7 adantl FFnABABA
9 fnssresb FFnAFBFnBBA
10 9 adantr FFnABAFBFnBBA
11 8 10 mpbird FFnABAFBFnB
12 fnfun FBFnBFunFB
13 11 12 syl FFnABAFunFB
14 df-dfat FdefAtBBdomFFunFB
15 afvfundmfveq FdefAtBF'''B=FB
16 14 15 sylbir BdomFFunFBF'''B=FB
17 6 13 16 syl2anc FFnABAF'''B=FB
18 17 eqeq1d FFnABAF'''B=CFB=C
19 fnbrfvb FFnABAFB=CBFC
20 18 19 bitrd FFnABAF'''B=CBFC