Metamath Proof Explorer


Theorem fnbrafvb

Description: Equivalence of function value and binary relation, analogous to fnbrfvb . (Contributed by Alexander van der Vekens, 25-May-2017)

Ref Expression
Assertion fnbrafvb F Fn A B A F ''' B = C B F C

Proof

Step Hyp Ref Expression
1 fndm F Fn A dom F = A
2 eleq2 A = dom F B A B dom F
3 2 eqcoms dom F = A B A B dom F
4 3 biimpd dom F = A B A B dom F
5 1 4 syl F Fn A B A B dom F
6 5 imp F Fn A B A B dom F
7 snssi B A B A
8 7 adantl F Fn A B A B A
9 fnssresb F Fn A F B Fn B B A
10 9 adantr F Fn A B A F B Fn B B A
11 8 10 mpbird F Fn A B A F B Fn B
12 fnfun F B Fn B Fun F B
13 11 12 syl F Fn A B A Fun F B
14 df-dfat F defAt B B dom F Fun F B
15 afvfundmfveq F defAt B F ''' B = F B
16 14 15 sylbir B dom F Fun F B F ''' B = F B
17 6 13 16 syl2anc F Fn A B A F ''' B = F B
18 17 eqeq1d F Fn A B A F ''' B = C F B = C
19 fnbrfvb F Fn A B A F B = C B F C
20 18 19 bitrd F Fn A B A F ''' B = C B F C