Metamath Proof Explorer


Theorem fundmafv2rnb

Description: The alternate function value at a class A is defined, i.e., in the range of the function iff A is in the domain of the function. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion fundmafv2rnb
|- ( Fun F -> ( A e. dom F <-> ( F '''' A ) e. ran F ) )

Proof

Step Hyp Ref Expression
1 funres
 |-  ( Fun F -> Fun ( F |` { A } ) )
2 dmafv2rnb
 |-  ( Fun ( F |` { A } ) -> ( A e. dom F <-> ( F '''' A ) e. ran F ) )
3 1 2 syl
 |-  ( Fun F -> ( A e. dom F <-> ( F '''' A ) e. ran F ) )