Metamath Proof Explorer


Theorem dmafv2rnb

Description: The alternate function value at a class A is defined, i.e., in the range of the function, iff A is in the domain of the function. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion dmafv2rnb
|- ( Fun ( F |` { A } ) -> ( A e. dom F <-> ( F '''' A ) e. ran F ) )

Proof

Step Hyp Ref Expression
1 iba
 |-  ( Fun ( F |` { A } ) -> ( A e. dom F <-> ( A e. dom F /\ Fun ( F |` { A } ) ) ) )
2 df-dfat
 |-  ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) )
3 dfatafv2rnb
 |-  ( F defAt A <-> ( F '''' A ) e. ran F )
4 2 3 bitr3i
 |-  ( ( A e. dom F /\ Fun ( F |` { A } ) ) <-> ( F '''' A ) e. ran F )
5 1 4 bitrdi
 |-  ( Fun ( F |` { A } ) -> ( A e. dom F <-> ( F '''' A ) e. ran F ) )