Metamath Proof Explorer


Theorem dfatafv2rnb

Description: The alternate function value at a class A is defined, i.e. in the range of the function, iff the function is defined at A . (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion dfatafv2rnb
|- ( F defAt A <-> ( F '''' A ) e. ran F )

Proof

Step Hyp Ref Expression
1 funressndmafv2rn
 |-  ( F defAt A -> ( F '''' A ) e. ran F )
2 ndfatafv2nrn
 |-  ( -. F defAt A -> ( F '''' A ) e/ ran F )
3 df-nel
 |-  ( ( F '''' A ) e/ ran F <-> -. ( F '''' A ) e. ran F )
4 2 3 sylib
 |-  ( -. F defAt A -> -. ( F '''' A ) e. ran F )
5 4 con4i
 |-  ( ( F '''' A ) e. ran F -> F defAt A )
6 1 5 impbii
 |-  ( F defAt A <-> ( F '''' A ) e. ran F )