Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
|- ( B = ( F '''' A ) -> ( B e. ran F <-> ( F '''' A ) e. ran F ) ) |
2 |
1
|
eqcoms |
|- ( ( F '''' A ) = B -> ( B e. ran F <-> ( F '''' A ) e. ran F ) ) |
3 |
2
|
biimpa |
|- ( ( ( F '''' A ) = B /\ B e. ran F ) -> ( F '''' A ) e. ran F ) |
4 |
|
nnel |
|- ( -. ( F '''' A ) e/ ran F <-> ( F '''' A ) e. ran F ) |
5 |
3 4
|
sylibr |
|- ( ( ( F '''' A ) = B /\ B e. ran F ) -> -. ( F '''' A ) e/ ran F ) |
6 |
5
|
a1d |
|- ( ( ( F '''' A ) = B /\ B e. ran F ) -> ( ( F '''' A ) = B -> -. ( F '''' A ) e/ ran F ) ) |
7 |
|
simpl |
|- ( ( ( F '''' A ) = B /\ B e. ran F ) -> ( F '''' A ) = B ) |
8 |
7
|
a1d |
|- ( ( ( F '''' A ) = B /\ B e. ran F ) -> ( -. ( F '''' A ) e/ ran F -> ( F '''' A ) = B ) ) |
9 |
6 8
|
jca |
|- ( ( ( F '''' A ) = B /\ B e. ran F ) -> ( ( ( F '''' A ) = B -> -. ( F '''' A ) e/ ran F ) /\ ( -. ( F '''' A ) e/ ran F -> ( F '''' A ) = B ) ) ) |
10 |
9
|
ex |
|- ( ( F '''' A ) = B -> ( B e. ran F -> ( ( ( F '''' A ) = B -> -. ( F '''' A ) e/ ran F ) /\ ( -. ( F '''' A ) e/ ran F -> ( F '''' A ) = B ) ) ) ) |
11 |
|
eleq1 |
|- ( ( F '''' A ) = B -> ( ( F '''' A ) e. ran F <-> B e. ran F ) ) |
12 |
11
|
anbi2d |
|- ( ( F '''' A ) = B -> ( ( ( F '''' A ) e/ ran F /\ ( F '''' A ) e. ran F ) <-> ( ( F '''' A ) e/ ran F /\ B e. ran F ) ) ) |
13 |
|
elnelall |
|- ( ( F '''' A ) e. ran F -> ( ( F '''' A ) e/ ran F -> -. ( F '''' A ) e/ ran F ) ) |
14 |
13
|
impcom |
|- ( ( ( F '''' A ) e/ ran F /\ ( F '''' A ) e. ran F ) -> -. ( F '''' A ) e/ ran F ) |
15 |
12 14
|
syl6bir |
|- ( ( F '''' A ) = B -> ( ( ( F '''' A ) e/ ran F /\ B e. ran F ) -> -. ( F '''' A ) e/ ran F ) ) |
16 |
15
|
com12 |
|- ( ( ( F '''' A ) e/ ran F /\ B e. ran F ) -> ( ( F '''' A ) = B -> -. ( F '''' A ) e/ ran F ) ) |
17 |
|
pm2.24 |
|- ( ( F '''' A ) e/ ran F -> ( -. ( F '''' A ) e/ ran F -> ( F '''' A ) = B ) ) |
18 |
17
|
adantr |
|- ( ( ( F '''' A ) e/ ran F /\ B e. ran F ) -> ( -. ( F '''' A ) e/ ran F -> ( F '''' A ) = B ) ) |
19 |
16 18
|
jca |
|- ( ( ( F '''' A ) e/ ran F /\ B e. ran F ) -> ( ( ( F '''' A ) = B -> -. ( F '''' A ) e/ ran F ) /\ ( -. ( F '''' A ) e/ ran F -> ( F '''' A ) = B ) ) ) |
20 |
19
|
ex |
|- ( ( F '''' A ) e/ ran F -> ( B e. ran F -> ( ( ( F '''' A ) = B -> -. ( F '''' A ) e/ ran F ) /\ ( -. ( F '''' A ) e/ ran F -> ( F '''' A ) = B ) ) ) ) |
21 |
10 20
|
jaoi |
|- ( ( ( F '''' A ) = B \/ ( F '''' A ) e/ ran F ) -> ( B e. ran F -> ( ( ( F '''' A ) = B -> -. ( F '''' A ) e/ ran F ) /\ ( -. ( F '''' A ) e/ ran F -> ( F '''' A ) = B ) ) ) ) |
22 |
21
|
com12 |
|- ( B e. ran F -> ( ( ( F '''' A ) = B \/ ( F '''' A ) e/ ran F ) -> ( ( ( F '''' A ) = B -> -. ( F '''' A ) e/ ran F ) /\ ( -. ( F '''' A ) e/ ran F -> ( F '''' A ) = B ) ) ) ) |
23 |
|
df-xor |
|- ( ( ( F '''' A ) = B \/_ ( F '''' A ) e/ ran F ) <-> -. ( ( F '''' A ) = B <-> ( F '''' A ) e/ ran F ) ) |
24 |
|
xor3 |
|- ( -. ( ( F '''' A ) = B <-> ( F '''' A ) e/ ran F ) <-> ( ( F '''' A ) = B <-> -. ( F '''' A ) e/ ran F ) ) |
25 |
|
dfbi2 |
|- ( ( ( F '''' A ) = B <-> -. ( F '''' A ) e/ ran F ) <-> ( ( ( F '''' A ) = B -> -. ( F '''' A ) e/ ran F ) /\ ( -. ( F '''' A ) e/ ran F -> ( F '''' A ) = B ) ) ) |
26 |
23 24 25
|
3bitri |
|- ( ( ( F '''' A ) = B \/_ ( F '''' A ) e/ ran F ) <-> ( ( ( F '''' A ) = B -> -. ( F '''' A ) e/ ran F ) /\ ( -. ( F '''' A ) e/ ran F -> ( F '''' A ) = B ) ) ) |
27 |
22 26
|
syl6ibr |
|- ( B e. ran F -> ( ( ( F '''' A ) = B \/ ( F '''' A ) e/ ran F ) -> ( ( F '''' A ) = B \/_ ( F '''' A ) e/ ran F ) ) ) |
28 |
|
xoror |
|- ( ( ( F '''' A ) = B \/_ ( F '''' A ) e/ ran F ) -> ( ( F '''' A ) = B \/ ( F '''' A ) e/ ran F ) ) |
29 |
27 28
|
impbid1 |
|- ( B e. ran F -> ( ( ( F '''' A ) = B \/ ( F '''' A ) e/ ran F ) <-> ( ( F '''' A ) = B \/_ ( F '''' A ) e/ ran F ) ) ) |