Step |
Hyp |
Ref |
Expression |
1 |
|
dfatafv2iota |
|- ( F defAt A -> ( F '''' A ) = ( iota y A F y ) ) |
2 |
|
df-dfat |
|- ( F defAt A <-> ( A e. dom F /\ Fun ( F |` { A } ) ) ) |
3 |
|
sneq |
|- ( x = A -> { x } = { A } ) |
4 |
3
|
reseq2d |
|- ( x = A -> ( F |` { x } ) = ( F |` { A } ) ) |
5 |
4
|
funeqd |
|- ( x = A -> ( Fun ( F |` { x } ) <-> Fun ( F |` { A } ) ) ) |
6 |
|
eleq1 |
|- ( x = A -> ( x e. dom F <-> A e. dom F ) ) |
7 |
5 6
|
anbi12d |
|- ( x = A -> ( ( Fun ( F |` { x } ) /\ x e. dom F ) <-> ( Fun ( F |` { A } ) /\ A e. dom F ) ) ) |
8 |
|
breq1 |
|- ( x = A -> ( x F y <-> A F y ) ) |
9 |
8
|
iotabidv |
|- ( x = A -> ( iota y x F y ) = ( iota y A F y ) ) |
10 |
9
|
eleq1d |
|- ( x = A -> ( ( iota y x F y ) e. ran F <-> ( iota y A F y ) e. ran F ) ) |
11 |
7 10
|
imbi12d |
|- ( x = A -> ( ( ( Fun ( F |` { x } ) /\ x e. dom F ) -> ( iota y x F y ) e. ran F ) <-> ( ( Fun ( F |` { A } ) /\ A e. dom F ) -> ( iota y A F y ) e. ran F ) ) ) |
12 |
|
eqid |
|- ( iota y x F y ) = ( iota y x F y ) |
13 |
|
iotaex |
|- ( iota y x F y ) e. _V |
14 |
|
eqeq2 |
|- ( z = ( iota y x F y ) -> ( ( iota y x F y ) = z <-> ( iota y x F y ) = ( iota y x F y ) ) ) |
15 |
|
breq2 |
|- ( z = ( iota y x F y ) -> ( x F z <-> x F ( iota y x F y ) ) ) |
16 |
14 15
|
bibi12d |
|- ( z = ( iota y x F y ) -> ( ( ( iota y x F y ) = z <-> x F z ) <-> ( ( iota y x F y ) = ( iota y x F y ) <-> x F ( iota y x F y ) ) ) ) |
17 |
16
|
imbi2d |
|- ( z = ( iota y x F y ) -> ( ( ( Fun ( F |` { x } ) /\ x e. dom F ) -> ( ( iota y x F y ) = z <-> x F z ) ) <-> ( ( Fun ( F |` { x } ) /\ x e. dom F ) -> ( ( iota y x F y ) = ( iota y x F y ) <-> x F ( iota y x F y ) ) ) ) ) |
18 |
|
eldmg |
|- ( x e. dom F -> ( x e. dom F <-> E. z x F z ) ) |
19 |
18
|
ibi |
|- ( x e. dom F -> E. z x F z ) |
20 |
19
|
adantl |
|- ( ( Fun ( F |` { x } ) /\ x e. dom F ) -> E. z x F z ) |
21 |
|
funressnvmo |
|- ( Fun ( F |` { x } ) -> E* z x F z ) |
22 |
21
|
adantr |
|- ( ( Fun ( F |` { x } ) /\ x e. dom F ) -> E* z x F z ) |
23 |
|
moeu |
|- ( E* z x F z <-> ( E. z x F z -> E! z x F z ) ) |
24 |
22 23
|
sylib |
|- ( ( Fun ( F |` { x } ) /\ x e. dom F ) -> ( E. z x F z -> E! z x F z ) ) |
25 |
20 24
|
mpd |
|- ( ( Fun ( F |` { x } ) /\ x e. dom F ) -> E! z x F z ) |
26 |
|
iota1 |
|- ( E! z x F z -> ( x F z <-> ( iota z x F z ) = z ) ) |
27 |
|
breq2 |
|- ( z = y -> ( x F z <-> x F y ) ) |
28 |
27
|
cbviotavw |
|- ( iota z x F z ) = ( iota y x F y ) |
29 |
28
|
eqeq1i |
|- ( ( iota z x F z ) = z <-> ( iota y x F y ) = z ) |
30 |
26 29
|
bitr2di |
|- ( E! z x F z -> ( ( iota y x F y ) = z <-> x F z ) ) |
31 |
25 30
|
syl |
|- ( ( Fun ( F |` { x } ) /\ x e. dom F ) -> ( ( iota y x F y ) = z <-> x F z ) ) |
32 |
13 17 31
|
vtocl |
|- ( ( Fun ( F |` { x } ) /\ x e. dom F ) -> ( ( iota y x F y ) = ( iota y x F y ) <-> x F ( iota y x F y ) ) ) |
33 |
12 32
|
mpbii |
|- ( ( Fun ( F |` { x } ) /\ x e. dom F ) -> x F ( iota y x F y ) ) |
34 |
|
df-br |
|- ( x F ( iota y x F y ) <-> <. x , ( iota y x F y ) >. e. F ) |
35 |
33 34
|
sylib |
|- ( ( Fun ( F |` { x } ) /\ x e. dom F ) -> <. x , ( iota y x F y ) >. e. F ) |
36 |
|
vex |
|- x e. _V |
37 |
|
opeq1 |
|- ( z = x -> <. z , ( iota y x F y ) >. = <. x , ( iota y x F y ) >. ) |
38 |
37
|
eleq1d |
|- ( z = x -> ( <. z , ( iota y x F y ) >. e. F <-> <. x , ( iota y x F y ) >. e. F ) ) |
39 |
36 38
|
spcev |
|- ( <. x , ( iota y x F y ) >. e. F -> E. z <. z , ( iota y x F y ) >. e. F ) |
40 |
35 39
|
syl |
|- ( ( Fun ( F |` { x } ) /\ x e. dom F ) -> E. z <. z , ( iota y x F y ) >. e. F ) |
41 |
13
|
elrn2 |
|- ( ( iota y x F y ) e. ran F <-> E. z <. z , ( iota y x F y ) >. e. F ) |
42 |
40 41
|
sylibr |
|- ( ( Fun ( F |` { x } ) /\ x e. dom F ) -> ( iota y x F y ) e. ran F ) |
43 |
11 42
|
vtoclg |
|- ( A e. dom F -> ( ( Fun ( F |` { A } ) /\ A e. dom F ) -> ( iota y A F y ) e. ran F ) ) |
44 |
43
|
anabsi6 |
|- ( ( A e. dom F /\ Fun ( F |` { A } ) ) -> ( iota y A F y ) e. ran F ) |
45 |
2 44
|
sylbi |
|- ( F defAt A -> ( iota y A F y ) e. ran F ) |
46 |
1 45
|
eqeltrd |
|- ( F defAt A -> ( F '''' A ) e. ran F ) |