Metamath Proof Explorer


Theorem funressnvmo

Description: A function restricted to a singleton has at most one value for the singleton element as argument. (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion funressnvmo
|- ( Fun ( F |` { x } ) -> E* y x F y )

Proof

Step Hyp Ref Expression
1 dffun6
 |-  ( Fun ( F |` { x } ) <-> ( Rel ( F |` { x } ) /\ A. z E* y z ( F |` { x } ) y ) )
2 breq1
 |-  ( x = z -> ( x ( F |` { x } ) y <-> z ( F |` { x } ) y ) )
3 2 equcoms
 |-  ( z = x -> ( x ( F |` { x } ) y <-> z ( F |` { x } ) y ) )
4 3 biimpd
 |-  ( z = x -> ( x ( F |` { x } ) y -> z ( F |` { x } ) y ) )
5 4 moimdv
 |-  ( z = x -> ( E* y z ( F |` { x } ) y -> E* y x ( F |` { x } ) y ) )
6 5 spimvw
 |-  ( A. z E* y z ( F |` { x } ) y -> E* y x ( F |` { x } ) y )
7 vsnid
 |-  x e. { x }
8 vex
 |-  y e. _V
9 8 brresi
 |-  ( x ( F |` { x } ) y <-> ( x e. { x } /\ x F y ) )
10 7 9 mpbiran
 |-  ( x ( F |` { x } ) y <-> x F y )
11 10 biimpri
 |-  ( x F y -> x ( F |` { x } ) y )
12 11 moimi
 |-  ( E* y x ( F |` { x } ) y -> E* y x F y )
13 6 12 syl
 |-  ( A. z E* y z ( F |` { x } ) y -> E* y x F y )
14 1 13 simplbiim
 |-  ( Fun ( F |` { x } ) -> E* y x F y )