Step |
Hyp |
Ref |
Expression |
1 |
|
sneq |
|- ( x = A -> { x } = { A } ) |
2 |
1
|
reseq2d |
|- ( x = A -> ( F |` { x } ) = ( F |` { A } ) ) |
3 |
2
|
funeqd |
|- ( x = A -> ( Fun ( F |` { x } ) <-> Fun ( F |` { A } ) ) ) |
4 |
|
breq1 |
|- ( x = A -> ( x F y <-> A F y ) ) |
5 |
4
|
mobidv |
|- ( x = A -> ( E* y x F y <-> E* y A F y ) ) |
6 |
3 5
|
imbi12d |
|- ( x = A -> ( ( Fun ( F |` { x } ) -> E* y x F y ) <-> ( Fun ( F |` { A } ) -> E* y A F y ) ) ) |
7 |
|
funressnvmo |
|- ( Fun ( F |` { x } ) -> E* y x F y ) |
8 |
6 7
|
vtoclg |
|- ( A e. V -> ( Fun ( F |` { A } ) -> E* y A F y ) ) |
9 |
8
|
imp |
|- ( ( A e. V /\ Fun ( F |` { A } ) ) -> E* y A F y ) |