Metamath Proof Explorer


Theorem funressnmo

Description: A function restricted to a singleton has at most one value for the singleton element as argument. (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion funressnmo
|- ( ( A e. V /\ Fun ( F |` { A } ) ) -> E* y A F y )

Proof

Step Hyp Ref Expression
1 sneq
 |-  ( x = A -> { x } = { A } )
2 1 reseq2d
 |-  ( x = A -> ( F |` { x } ) = ( F |` { A } ) )
3 2 funeqd
 |-  ( x = A -> ( Fun ( F |` { x } ) <-> Fun ( F |` { A } ) ) )
4 breq1
 |-  ( x = A -> ( x F y <-> A F y ) )
5 4 mobidv
 |-  ( x = A -> ( E* y x F y <-> E* y A F y ) )
6 3 5 imbi12d
 |-  ( x = A -> ( ( Fun ( F |` { x } ) -> E* y x F y ) <-> ( Fun ( F |` { A } ) -> E* y A F y ) ) )
7 funressnvmo
 |-  ( Fun ( F |` { x } ) -> E* y x F y )
8 6 7 vtoclg
 |-  ( A e. V -> ( Fun ( F |` { A } ) -> E* y A F y ) )
9 8 imp
 |-  ( ( A e. V /\ Fun ( F |` { A } ) ) -> E* y A F y )