Metamath Proof Explorer


Theorem funressnvmo

Description: A function restricted to a singleton has at most one value for the singleton element as argument. (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion funressnvmo ( Fun ( 𝐹 ↾ { 𝑥 } ) → ∃* 𝑦 𝑥 𝐹 𝑦 )

Proof

Step Hyp Ref Expression
1 dffun6 ( Fun ( 𝐹 ↾ { 𝑥 } ) ↔ ( Rel ( 𝐹 ↾ { 𝑥 } ) ∧ ∀ 𝑧 ∃* 𝑦 𝑧 ( 𝐹 ↾ { 𝑥 } ) 𝑦 ) )
2 breq1 ( 𝑥 = 𝑧 → ( 𝑥 ( 𝐹 ↾ { 𝑥 } ) 𝑦𝑧 ( 𝐹 ↾ { 𝑥 } ) 𝑦 ) )
3 2 equcoms ( 𝑧 = 𝑥 → ( 𝑥 ( 𝐹 ↾ { 𝑥 } ) 𝑦𝑧 ( 𝐹 ↾ { 𝑥 } ) 𝑦 ) )
4 3 biimpd ( 𝑧 = 𝑥 → ( 𝑥 ( 𝐹 ↾ { 𝑥 } ) 𝑦𝑧 ( 𝐹 ↾ { 𝑥 } ) 𝑦 ) )
5 4 moimdv ( 𝑧 = 𝑥 → ( ∃* 𝑦 𝑧 ( 𝐹 ↾ { 𝑥 } ) 𝑦 → ∃* 𝑦 𝑥 ( 𝐹 ↾ { 𝑥 } ) 𝑦 ) )
6 5 spimvw ( ∀ 𝑧 ∃* 𝑦 𝑧 ( 𝐹 ↾ { 𝑥 } ) 𝑦 → ∃* 𝑦 𝑥 ( 𝐹 ↾ { 𝑥 } ) 𝑦 )
7 vsnid 𝑥 ∈ { 𝑥 }
8 vex 𝑦 ∈ V
9 8 brresi ( 𝑥 ( 𝐹 ↾ { 𝑥 } ) 𝑦 ↔ ( 𝑥 ∈ { 𝑥 } ∧ 𝑥 𝐹 𝑦 ) )
10 7 9 mpbiran ( 𝑥 ( 𝐹 ↾ { 𝑥 } ) 𝑦𝑥 𝐹 𝑦 )
11 10 biimpri ( 𝑥 𝐹 𝑦𝑥 ( 𝐹 ↾ { 𝑥 } ) 𝑦 )
12 11 moimi ( ∃* 𝑦 𝑥 ( 𝐹 ↾ { 𝑥 } ) 𝑦 → ∃* 𝑦 𝑥 𝐹 𝑦 )
13 6 12 syl ( ∀ 𝑧 ∃* 𝑦 𝑧 ( 𝐹 ↾ { 𝑥 } ) 𝑦 → ∃* 𝑦 𝑥 𝐹 𝑦 )
14 1 13 simplbiim ( Fun ( 𝐹 ↾ { 𝑥 } ) → ∃* 𝑦 𝑥 𝐹 𝑦 )