| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dffun6 |
⊢ ( Fun ( 𝐹 ↾ { 𝑥 } ) ↔ ( Rel ( 𝐹 ↾ { 𝑥 } ) ∧ ∀ 𝑧 ∃* 𝑦 𝑧 ( 𝐹 ↾ { 𝑥 } ) 𝑦 ) ) |
| 2 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ( 𝐹 ↾ { 𝑥 } ) 𝑦 ↔ 𝑧 ( 𝐹 ↾ { 𝑥 } ) 𝑦 ) ) |
| 3 |
2
|
equcoms |
⊢ ( 𝑧 = 𝑥 → ( 𝑥 ( 𝐹 ↾ { 𝑥 } ) 𝑦 ↔ 𝑧 ( 𝐹 ↾ { 𝑥 } ) 𝑦 ) ) |
| 4 |
3
|
biimpd |
⊢ ( 𝑧 = 𝑥 → ( 𝑥 ( 𝐹 ↾ { 𝑥 } ) 𝑦 → 𝑧 ( 𝐹 ↾ { 𝑥 } ) 𝑦 ) ) |
| 5 |
4
|
moimdv |
⊢ ( 𝑧 = 𝑥 → ( ∃* 𝑦 𝑧 ( 𝐹 ↾ { 𝑥 } ) 𝑦 → ∃* 𝑦 𝑥 ( 𝐹 ↾ { 𝑥 } ) 𝑦 ) ) |
| 6 |
5
|
spimvw |
⊢ ( ∀ 𝑧 ∃* 𝑦 𝑧 ( 𝐹 ↾ { 𝑥 } ) 𝑦 → ∃* 𝑦 𝑥 ( 𝐹 ↾ { 𝑥 } ) 𝑦 ) |
| 7 |
|
vsnid |
⊢ 𝑥 ∈ { 𝑥 } |
| 8 |
|
vex |
⊢ 𝑦 ∈ V |
| 9 |
8
|
brresi |
⊢ ( 𝑥 ( 𝐹 ↾ { 𝑥 } ) 𝑦 ↔ ( 𝑥 ∈ { 𝑥 } ∧ 𝑥 𝐹 𝑦 ) ) |
| 10 |
7 9
|
mpbiran |
⊢ ( 𝑥 ( 𝐹 ↾ { 𝑥 } ) 𝑦 ↔ 𝑥 𝐹 𝑦 ) |
| 11 |
10
|
biimpri |
⊢ ( 𝑥 𝐹 𝑦 → 𝑥 ( 𝐹 ↾ { 𝑥 } ) 𝑦 ) |
| 12 |
11
|
moimi |
⊢ ( ∃* 𝑦 𝑥 ( 𝐹 ↾ { 𝑥 } ) 𝑦 → ∃* 𝑦 𝑥 𝐹 𝑦 ) |
| 13 |
6 12
|
syl |
⊢ ( ∀ 𝑧 ∃* 𝑦 𝑧 ( 𝐹 ↾ { 𝑥 } ) 𝑦 → ∃* 𝑦 𝑥 𝐹 𝑦 ) |
| 14 |
1 13
|
simplbiim |
⊢ ( Fun ( 𝐹 ↾ { 𝑥 } ) → ∃* 𝑦 𝑥 𝐹 𝑦 ) |