Step |
Hyp |
Ref |
Expression |
1 |
|
pwuninel |
|- -. ~P U. ran F e. ran F |
2 |
|
df-nel |
|- ( ( F '''' A ) e/ ran F <-> -. ( F '''' A ) e. ran F ) |
3 |
|
eleq1 |
|- ( ( F '''' A ) = ~P U. ran F -> ( ( F '''' A ) e. ran F <-> ~P U. ran F e. ran F ) ) |
4 |
3
|
notbid |
|- ( ( F '''' A ) = ~P U. ran F -> ( -. ( F '''' A ) e. ran F <-> -. ~P U. ran F e. ran F ) ) |
5 |
2 4
|
syl5bb |
|- ( ( F '''' A ) = ~P U. ran F -> ( ( F '''' A ) e/ ran F <-> -. ~P U. ran F e. ran F ) ) |
6 |
1 5
|
mpbiri |
|- ( ( F '''' A ) = ~P U. ran F -> ( F '''' A ) e/ ran F ) |
7 |
|
funressndmafv2rn |
|- ( F defAt A -> ( F '''' A ) e. ran F ) |
8 |
7
|
con3i |
|- ( -. ( F '''' A ) e. ran F -> -. F defAt A ) |
9 |
2 8
|
sylbi |
|- ( ( F '''' A ) e/ ran F -> -. F defAt A ) |
10 |
|
ndfatafv2 |
|- ( -. F defAt A -> ( F '''' A ) = ~P U. ran F ) |
11 |
9 10
|
syl |
|- ( ( F '''' A ) e/ ran F -> ( F '''' A ) = ~P U. ran F ) |
12 |
6 11
|
impbii |
|- ( ( F '''' A ) = ~P U. ran F <-> ( F '''' A ) e/ ran F ) |