Metamath Proof Explorer


Theorem ndfatafv2

Description: The alternate function value at a class A if the function is not defined at this set A . (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion ndfatafv2
|- ( -. F defAt A -> ( F '''' A ) = ~P U. ran F )

Proof

Step Hyp Ref Expression
1 df-afv2
 |-  ( F '''' A ) = if ( F defAt A , ( iota x A F x ) , ~P U. ran F )
2 iffalse
 |-  ( -. F defAt A -> if ( F defAt A , ( iota x A F x ) , ~P U. ran F ) = ~P U. ran F )
3 1 2 syl5eq
 |-  ( -. F defAt A -> ( F '''' A ) = ~P U. ran F )