Metamath Proof Explorer


Theorem ndfatafv2

Description: The alternate function value at a class A if the function is not defined at this set A . (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion ndfatafv2 ¬ F defAt A F '''' A = 𝒫 ran F

Proof

Step Hyp Ref Expression
1 df-afv2 F '''' A = if F defAt A ι x | A F x 𝒫 ran F
2 iffalse ¬ F defAt A if F defAt A ι x | A F x 𝒫 ran F = 𝒫 ran F
3 1 2 syl5eq ¬ F defAt A F '''' A = 𝒫 ran F