Metamath Proof Explorer


Theorem ndfatafv2

Description: The alternate function value at a class A if the function is not defined at this set A . (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion ndfatafv2 ¬FdefAtAF''''A=𝒫ranF

Proof

Step Hyp Ref Expression
1 df-afv2 F''''A=ifFdefAtAιx|AFx𝒫ranF
2 iffalse ¬FdefAtAifFdefAtAιx|AFx𝒫ranF=𝒫ranF
3 1 2 eqtrid ¬FdefAtAF''''A=𝒫ranF