Metamath Proof Explorer


Theorem pwuninel

Description: The power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. See also pwuninel2 . (Contributed by NM, 27-Jun-2008) (Proof shortened by Mario Carneiro, 23-Dec-2016)

Ref Expression
Assertion pwuninel
|- -. ~P U. A e. A

Proof

Step Hyp Ref Expression
1 pwexr
 |-  ( ~P U. A e. A -> U. A e. _V )
2 pwuninel2
 |-  ( U. A e. _V -> -. ~P U. A e. A )
3 1 2 syl
 |-  ( ~P U. A e. A -> -. ~P U. A e. A )
4 id
 |-  ( -. ~P U. A e. A -> -. ~P U. A e. A )
5 3 4 pm2.61i
 |-  -. ~P U. A e. A