Description: The power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. See also pwuninel2 . (Contributed by NM, 27-Jun-2008) (Proof shortened by Mario Carneiro, 23-Dec-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | pwuninel | |- -. ~P U. A e. A |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwexr | |- ( ~P U. A e. A -> U. A e. _V ) |
|
2 | pwuninel2 | |- ( U. A e. _V -> -. ~P U. A e. A ) |
|
3 | 1 2 | syl | |- ( ~P U. A e. A -> -. ~P U. A e. A ) |
4 | id | |- ( -. ~P U. A e. A -> -. ~P U. A e. A ) |
|
5 | 3 4 | pm2.61i | |- -. ~P U. A e. A |