Metamath Proof Explorer


Theorem undefval

Description: Value of the undefined value function. Normally we will not reference the explicit value but will use undefnel instead. (Contributed by NM, 15-Sep-2011) (Revised by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion undefval
|- ( S e. V -> ( Undef ` S ) = ~P U. S )

Proof

Step Hyp Ref Expression
1 df-undef
 |-  Undef = ( s e. _V |-> ~P U. s )
2 unieq
 |-  ( s = S -> U. s = U. S )
3 2 pweqd
 |-  ( s = S -> ~P U. s = ~P U. S )
4 elex
 |-  ( S e. V -> S e. _V )
5 uniexg
 |-  ( S e. V -> U. S e. _V )
6 5 pwexd
 |-  ( S e. V -> ~P U. S e. _V )
7 1 3 4 6 fvmptd3
 |-  ( S e. V -> ( Undef ` S ) = ~P U. S )