Metamath Proof Explorer


Theorem undefnel2

Description: The undefined value generated from a set is not a member of the set. (Contributed by NM, 15-Sep-2011)

Ref Expression
Assertion undefnel2
|- ( S e. V -> -. ( Undef ` S ) e. S )

Proof

Step Hyp Ref Expression
1 pwuninel
 |-  -. ~P U. S e. S
2 undefval
 |-  ( S e. V -> ( Undef ` S ) = ~P U. S )
3 2 eleq1d
 |-  ( S e. V -> ( ( Undef ` S ) e. S <-> ~P U. S e. S ) )
4 1 3 mtbiri
 |-  ( S e. V -> -. ( Undef ` S ) e. S )