Metamath Proof Explorer


Theorem undefval

Description: Value of the undefined value function. Normally we will not reference the explicit value but will use undefnel instead. (Contributed by NM, 15-Sep-2011) (Revised by Mario Carneiro, 24-Dec-2016)

Ref Expression
Assertion undefval SVUndefS=𝒫S

Proof

Step Hyp Ref Expression
1 df-undef Undef=sV𝒫s
2 unieq s=Ss=S
3 2 pweqd s=S𝒫s=𝒫S
4 elex SVSV
5 uniexg SVSV
6 5 pwexd SV𝒫SV
7 1 3 4 6 fvmptd3 SVUndefS=𝒫S