Metamath Proof Explorer


Theorem funressndmafv2rn

Description: The alternate function value at a class A is defined, i.e., in the range of the function if the function is defined at A . (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion funressndmafv2rn FdefAtAF''''AranF

Proof

Step Hyp Ref Expression
1 dfatafv2iota FdefAtAF''''A=ιy|AFy
2 df-dfat FdefAtAAdomFFunFA
3 sneq x=Ax=A
4 3 reseq2d x=AFx=FA
5 4 funeqd x=AFunFxFunFA
6 eleq1 x=AxdomFAdomF
7 5 6 anbi12d x=AFunFxxdomFFunFAAdomF
8 breq1 x=AxFyAFy
9 8 iotabidv x=Aιy|xFy=ιy|AFy
10 9 eleq1d x=Aιy|xFyranFιy|AFyranF
11 7 10 imbi12d x=AFunFxxdomFιy|xFyranFFunFAAdomFιy|AFyranF
12 eqid ιy|xFy=ιy|xFy
13 iotaex ιy|xFyV
14 eqeq2 z=ιy|xFyιy|xFy=zιy|xFy=ιy|xFy
15 breq2 z=ιy|xFyxFzxFιy|xFy
16 14 15 bibi12d z=ιy|xFyιy|xFy=zxFzιy|xFy=ιy|xFyxFιy|xFy
17 16 imbi2d z=ιy|xFyFunFxxdomFιy|xFy=zxFzFunFxxdomFιy|xFy=ιy|xFyxFιy|xFy
18 eldmg xdomFxdomFzxFz
19 18 ibi xdomFzxFz
20 19 adantl FunFxxdomFzxFz
21 funressnvmo FunFx*zxFz
22 21 adantr FunFxxdomF*zxFz
23 moeu *zxFzzxFz∃!zxFz
24 22 23 sylib FunFxxdomFzxFz∃!zxFz
25 20 24 mpd FunFxxdomF∃!zxFz
26 iota1 ∃!zxFzxFzιz|xFz=z
27 breq2 z=yxFzxFy
28 27 cbviotavw ιz|xFz=ιy|xFy
29 28 eqeq1i ιz|xFz=zιy|xFy=z
30 26 29 bitr2di ∃!zxFzιy|xFy=zxFz
31 25 30 syl FunFxxdomFιy|xFy=zxFz
32 13 17 31 vtocl FunFxxdomFιy|xFy=ιy|xFyxFιy|xFy
33 12 32 mpbii FunFxxdomFxFιy|xFy
34 df-br xFιy|xFyxιy|xFyF
35 33 34 sylib FunFxxdomFxιy|xFyF
36 vex xV
37 opeq1 z=xzιy|xFy=xιy|xFy
38 37 eleq1d z=xzιy|xFyFxιy|xFyF
39 36 38 spcev xιy|xFyFzzιy|xFyF
40 35 39 syl FunFxxdomFzzιy|xFyF
41 13 elrn2 ιy|xFyranFzzιy|xFyF
42 40 41 sylibr FunFxxdomFιy|xFyranF
43 11 42 vtoclg AdomFFunFAAdomFιy|AFyranF
44 43 anabsi6 AdomFFunFAιy|AFyranF
45 2 44 sylbi FdefAtAιy|AFyranF
46 1 45 eqeltrd FdefAtAF''''AranF