Metamath Proof Explorer


Theorem iota1

Description: Property of iota. (Contributed by NM, 23-Aug-2011) (Revised by Mario Carneiro, 23-Dec-2016)

Ref Expression
Assertion iota1 ∃!xφφιx|φ=x

Proof

Step Hyp Ref Expression
1 eu6 ∃!xφzxφx=z
2 sp xφx=zφx=z
3 iotaval xφx=zιx|φ=z
4 3 eqeq2d xφx=zx=ιx|φx=z
5 2 4 bitr4d xφx=zφx=ιx|φ
6 eqcom x=ιx|φιx|φ=x
7 5 6 bitrdi xφx=zφιx|φ=x
8 7 exlimiv zxφx=zφιx|φ=x
9 1 8 sylbi ∃!xφφιx|φ=x