Metamath Proof Explorer


Theorem iotanul

Description: Theorem 8.22 in Quine p. 57. This theorem is the result if there isn't exactly one x that satisfies ph . (Contributed by Andrew Salmon, 11-Jul-2011)

Ref Expression
Assertion iotanul ¬∃!xφιx|φ=

Proof

Step Hyp Ref Expression
1 eu6 ∃!xφzxφx=z
2 dfiota2 ιx|φ=z|xφx=z
3 alnex z¬xφx=z¬zxφx=z
4 dfnul2 =z|¬z=z
5 equid z=z
6 5 tbt ¬xφx=z¬xφx=zz=z
7 6 biimpi ¬xφx=z¬xφx=zz=z
8 7 con1bid ¬xφx=z¬z=zxφx=z
9 8 alimi z¬xφx=zz¬z=zxφx=z
10 abbi z¬z=zxφx=zz|¬z=z=z|xφx=z
11 9 10 syl z¬xφx=zz|¬z=z=z|xφx=z
12 4 11 eqtr2id z¬xφx=zz|xφx=z=
13 3 12 sylbir ¬zxφx=zz|xφx=z=
14 13 unieqd ¬zxφx=zz|xφx=z=
15 uni0 =
16 14 15 eqtrdi ¬zxφx=zz|xφx=z=
17 2 16 eqtrid ¬zxφx=zιx|φ=
18 1 17 sylnbi ¬∃!xφιx|φ=