Metamath Proof Explorer


Theorem dfatafv2iota

Description: If a function is defined at a class A the alternate function value at A is the unique value assigned to A by the function (analogously to ( FA ) ). (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion dfatafv2iota FdefAtAF''''A=ιx|AFx

Proof

Step Hyp Ref Expression
1 df-afv2 F''''A=ifFdefAtAιx|AFx𝒫ranF
2 iftrue FdefAtAifFdefAtAιx|AFx𝒫ranF=ιx|AFx
3 1 2 eqtrid FdefAtAF''''A=ιx|AFx