Metamath Proof Explorer


Theorem dfatafv2iota

Description: If a function is defined at a class A the alternate function value at A is the unique value assigned to A by the function (analogously to ( FA ) ). (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion dfatafv2iota
|- ( F defAt A -> ( F '''' A ) = ( iota x A F x ) )

Proof

Step Hyp Ref Expression
1 df-afv2
 |-  ( F '''' A ) = if ( F defAt A , ( iota x A F x ) , ~P U. ran F )
2 iftrue
 |-  ( F defAt A -> if ( F defAt A , ( iota x A F x ) , ~P U. ran F ) = ( iota x A F x ) )
3 1 2 eqtrid
 |-  ( F defAt A -> ( F '''' A ) = ( iota x A F x ) )