Metamath Proof Explorer


Theorem dfatafv2iota

Description: If a function is defined at a class A the alternate function value at A is the unique value assigned to A by the function (analogously to ( FA ) ). (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion dfatafv2iota ( 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) )

Proof

Step Hyp Ref Expression
1 df-afv2 ( 𝐹 '''' 𝐴 ) = if ( 𝐹 defAt 𝐴 , ( ℩ 𝑥 𝐴 𝐹 𝑥 ) , 𝒫 ran 𝐹 )
2 iftrue ( 𝐹 defAt 𝐴 → if ( 𝐹 defAt 𝐴 , ( ℩ 𝑥 𝐴 𝐹 𝑥 ) , 𝒫 ran 𝐹 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) )
3 1 2 syl5eq ( 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) = ( ℩ 𝑥 𝐴 𝐹 𝑥 ) )