Step |
Hyp |
Ref |
Expression |
1 |
|
dfatafv2iota |
⊢ ( 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) = ( ℩ 𝑦 𝐴 𝐹 𝑦 ) ) |
2 |
|
df-dfat |
⊢ ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
3 |
|
sneq |
⊢ ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } ) |
4 |
3
|
reseq2d |
⊢ ( 𝑥 = 𝐴 → ( 𝐹 ↾ { 𝑥 } ) = ( 𝐹 ↾ { 𝐴 } ) ) |
5 |
4
|
funeqd |
⊢ ( 𝑥 = 𝐴 → ( Fun ( 𝐹 ↾ { 𝑥 } ) ↔ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) |
6 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ dom 𝐹 ↔ 𝐴 ∈ dom 𝐹 ) ) |
7 |
5 6
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( Fun ( 𝐹 ↾ { 𝑥 } ) ∧ 𝑥 ∈ dom 𝐹 ) ↔ ( Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 ∈ dom 𝐹 ) ) ) |
8 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 𝐹 𝑦 ↔ 𝐴 𝐹 𝑦 ) ) |
9 |
8
|
iotabidv |
⊢ ( 𝑥 = 𝐴 → ( ℩ 𝑦 𝑥 𝐹 𝑦 ) = ( ℩ 𝑦 𝐴 𝐹 𝑦 ) ) |
10 |
9
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( ℩ 𝑦 𝑥 𝐹 𝑦 ) ∈ ran 𝐹 ↔ ( ℩ 𝑦 𝐴 𝐹 𝑦 ) ∈ ran 𝐹 ) ) |
11 |
7 10
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( Fun ( 𝐹 ↾ { 𝑥 } ) ∧ 𝑥 ∈ dom 𝐹 ) → ( ℩ 𝑦 𝑥 𝐹 𝑦 ) ∈ ran 𝐹 ) ↔ ( ( Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 ∈ dom 𝐹 ) → ( ℩ 𝑦 𝐴 𝐹 𝑦 ) ∈ ran 𝐹 ) ) ) |
12 |
|
eqid |
⊢ ( ℩ 𝑦 𝑥 𝐹 𝑦 ) = ( ℩ 𝑦 𝑥 𝐹 𝑦 ) |
13 |
|
iotaex |
⊢ ( ℩ 𝑦 𝑥 𝐹 𝑦 ) ∈ V |
14 |
|
eqeq2 |
⊢ ( 𝑧 = ( ℩ 𝑦 𝑥 𝐹 𝑦 ) → ( ( ℩ 𝑦 𝑥 𝐹 𝑦 ) = 𝑧 ↔ ( ℩ 𝑦 𝑥 𝐹 𝑦 ) = ( ℩ 𝑦 𝑥 𝐹 𝑦 ) ) ) |
15 |
|
breq2 |
⊢ ( 𝑧 = ( ℩ 𝑦 𝑥 𝐹 𝑦 ) → ( 𝑥 𝐹 𝑧 ↔ 𝑥 𝐹 ( ℩ 𝑦 𝑥 𝐹 𝑦 ) ) ) |
16 |
14 15
|
bibi12d |
⊢ ( 𝑧 = ( ℩ 𝑦 𝑥 𝐹 𝑦 ) → ( ( ( ℩ 𝑦 𝑥 𝐹 𝑦 ) = 𝑧 ↔ 𝑥 𝐹 𝑧 ) ↔ ( ( ℩ 𝑦 𝑥 𝐹 𝑦 ) = ( ℩ 𝑦 𝑥 𝐹 𝑦 ) ↔ 𝑥 𝐹 ( ℩ 𝑦 𝑥 𝐹 𝑦 ) ) ) ) |
17 |
16
|
imbi2d |
⊢ ( 𝑧 = ( ℩ 𝑦 𝑥 𝐹 𝑦 ) → ( ( ( Fun ( 𝐹 ↾ { 𝑥 } ) ∧ 𝑥 ∈ dom 𝐹 ) → ( ( ℩ 𝑦 𝑥 𝐹 𝑦 ) = 𝑧 ↔ 𝑥 𝐹 𝑧 ) ) ↔ ( ( Fun ( 𝐹 ↾ { 𝑥 } ) ∧ 𝑥 ∈ dom 𝐹 ) → ( ( ℩ 𝑦 𝑥 𝐹 𝑦 ) = ( ℩ 𝑦 𝑥 𝐹 𝑦 ) ↔ 𝑥 𝐹 ( ℩ 𝑦 𝑥 𝐹 𝑦 ) ) ) ) ) |
18 |
|
eldmg |
⊢ ( 𝑥 ∈ dom 𝐹 → ( 𝑥 ∈ dom 𝐹 ↔ ∃ 𝑧 𝑥 𝐹 𝑧 ) ) |
19 |
18
|
ibi |
⊢ ( 𝑥 ∈ dom 𝐹 → ∃ 𝑧 𝑥 𝐹 𝑧 ) |
20 |
19
|
adantl |
⊢ ( ( Fun ( 𝐹 ↾ { 𝑥 } ) ∧ 𝑥 ∈ dom 𝐹 ) → ∃ 𝑧 𝑥 𝐹 𝑧 ) |
21 |
|
funressnvmo |
⊢ ( Fun ( 𝐹 ↾ { 𝑥 } ) → ∃* 𝑧 𝑥 𝐹 𝑧 ) |
22 |
21
|
adantr |
⊢ ( ( Fun ( 𝐹 ↾ { 𝑥 } ) ∧ 𝑥 ∈ dom 𝐹 ) → ∃* 𝑧 𝑥 𝐹 𝑧 ) |
23 |
|
moeu |
⊢ ( ∃* 𝑧 𝑥 𝐹 𝑧 ↔ ( ∃ 𝑧 𝑥 𝐹 𝑧 → ∃! 𝑧 𝑥 𝐹 𝑧 ) ) |
24 |
22 23
|
sylib |
⊢ ( ( Fun ( 𝐹 ↾ { 𝑥 } ) ∧ 𝑥 ∈ dom 𝐹 ) → ( ∃ 𝑧 𝑥 𝐹 𝑧 → ∃! 𝑧 𝑥 𝐹 𝑧 ) ) |
25 |
20 24
|
mpd |
⊢ ( ( Fun ( 𝐹 ↾ { 𝑥 } ) ∧ 𝑥 ∈ dom 𝐹 ) → ∃! 𝑧 𝑥 𝐹 𝑧 ) |
26 |
|
iota1 |
⊢ ( ∃! 𝑧 𝑥 𝐹 𝑧 → ( 𝑥 𝐹 𝑧 ↔ ( ℩ 𝑧 𝑥 𝐹 𝑧 ) = 𝑧 ) ) |
27 |
|
breq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑥 𝐹 𝑧 ↔ 𝑥 𝐹 𝑦 ) ) |
28 |
27
|
cbviotavw |
⊢ ( ℩ 𝑧 𝑥 𝐹 𝑧 ) = ( ℩ 𝑦 𝑥 𝐹 𝑦 ) |
29 |
28
|
eqeq1i |
⊢ ( ( ℩ 𝑧 𝑥 𝐹 𝑧 ) = 𝑧 ↔ ( ℩ 𝑦 𝑥 𝐹 𝑦 ) = 𝑧 ) |
30 |
26 29
|
bitr2di |
⊢ ( ∃! 𝑧 𝑥 𝐹 𝑧 → ( ( ℩ 𝑦 𝑥 𝐹 𝑦 ) = 𝑧 ↔ 𝑥 𝐹 𝑧 ) ) |
31 |
25 30
|
syl |
⊢ ( ( Fun ( 𝐹 ↾ { 𝑥 } ) ∧ 𝑥 ∈ dom 𝐹 ) → ( ( ℩ 𝑦 𝑥 𝐹 𝑦 ) = 𝑧 ↔ 𝑥 𝐹 𝑧 ) ) |
32 |
13 17 31
|
vtocl |
⊢ ( ( Fun ( 𝐹 ↾ { 𝑥 } ) ∧ 𝑥 ∈ dom 𝐹 ) → ( ( ℩ 𝑦 𝑥 𝐹 𝑦 ) = ( ℩ 𝑦 𝑥 𝐹 𝑦 ) ↔ 𝑥 𝐹 ( ℩ 𝑦 𝑥 𝐹 𝑦 ) ) ) |
33 |
12 32
|
mpbii |
⊢ ( ( Fun ( 𝐹 ↾ { 𝑥 } ) ∧ 𝑥 ∈ dom 𝐹 ) → 𝑥 𝐹 ( ℩ 𝑦 𝑥 𝐹 𝑦 ) ) |
34 |
|
df-br |
⊢ ( 𝑥 𝐹 ( ℩ 𝑦 𝑥 𝐹 𝑦 ) ↔ 〈 𝑥 , ( ℩ 𝑦 𝑥 𝐹 𝑦 ) 〉 ∈ 𝐹 ) |
35 |
33 34
|
sylib |
⊢ ( ( Fun ( 𝐹 ↾ { 𝑥 } ) ∧ 𝑥 ∈ dom 𝐹 ) → 〈 𝑥 , ( ℩ 𝑦 𝑥 𝐹 𝑦 ) 〉 ∈ 𝐹 ) |
36 |
|
vex |
⊢ 𝑥 ∈ V |
37 |
|
opeq1 |
⊢ ( 𝑧 = 𝑥 → 〈 𝑧 , ( ℩ 𝑦 𝑥 𝐹 𝑦 ) 〉 = 〈 𝑥 , ( ℩ 𝑦 𝑥 𝐹 𝑦 ) 〉 ) |
38 |
37
|
eleq1d |
⊢ ( 𝑧 = 𝑥 → ( 〈 𝑧 , ( ℩ 𝑦 𝑥 𝐹 𝑦 ) 〉 ∈ 𝐹 ↔ 〈 𝑥 , ( ℩ 𝑦 𝑥 𝐹 𝑦 ) 〉 ∈ 𝐹 ) ) |
39 |
36 38
|
spcev |
⊢ ( 〈 𝑥 , ( ℩ 𝑦 𝑥 𝐹 𝑦 ) 〉 ∈ 𝐹 → ∃ 𝑧 〈 𝑧 , ( ℩ 𝑦 𝑥 𝐹 𝑦 ) 〉 ∈ 𝐹 ) |
40 |
35 39
|
syl |
⊢ ( ( Fun ( 𝐹 ↾ { 𝑥 } ) ∧ 𝑥 ∈ dom 𝐹 ) → ∃ 𝑧 〈 𝑧 , ( ℩ 𝑦 𝑥 𝐹 𝑦 ) 〉 ∈ 𝐹 ) |
41 |
13
|
elrn2 |
⊢ ( ( ℩ 𝑦 𝑥 𝐹 𝑦 ) ∈ ran 𝐹 ↔ ∃ 𝑧 〈 𝑧 , ( ℩ 𝑦 𝑥 𝐹 𝑦 ) 〉 ∈ 𝐹 ) |
42 |
40 41
|
sylibr |
⊢ ( ( Fun ( 𝐹 ↾ { 𝑥 } ) ∧ 𝑥 ∈ dom 𝐹 ) → ( ℩ 𝑦 𝑥 𝐹 𝑦 ) ∈ ran 𝐹 ) |
43 |
11 42
|
vtoclg |
⊢ ( 𝐴 ∈ dom 𝐹 → ( ( Fun ( 𝐹 ↾ { 𝐴 } ) ∧ 𝐴 ∈ dom 𝐹 ) → ( ℩ 𝑦 𝐴 𝐹 𝑦 ) ∈ ran 𝐹 ) ) |
44 |
43
|
anabsi6 |
⊢ ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) → ( ℩ 𝑦 𝐴 𝐹 𝑦 ) ∈ ran 𝐹 ) |
45 |
2 44
|
sylbi |
⊢ ( 𝐹 defAt 𝐴 → ( ℩ 𝑦 𝐴 𝐹 𝑦 ) ∈ ran 𝐹 ) |
46 |
1 45
|
eqeltrd |
⊢ ( 𝐹 defAt 𝐴 → ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 ) |