Metamath Proof Explorer


Theorem ndfatafv2nrn

Description: The alternate function value at a class A at which the function is not defined is undefined, i.e., not in the range of the function. (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion ndfatafv2nrn
|- ( -. F defAt A -> ( F '''' A ) e/ ran F )

Proof

Step Hyp Ref Expression
1 ndfatafv2
 |-  ( -. F defAt A -> ( F '''' A ) = ~P U. ran F )
2 pwuninel
 |-  -. ~P U. ran F e. ran F
3 df-nel
 |-  ( ( F '''' A ) e/ ran F <-> -. ( F '''' A ) e. ran F )
4 eleq1
 |-  ( ( F '''' A ) = ~P U. ran F -> ( ( F '''' A ) e. ran F <-> ~P U. ran F e. ran F ) )
5 4 notbid
 |-  ( ( F '''' A ) = ~P U. ran F -> ( -. ( F '''' A ) e. ran F <-> -. ~P U. ran F e. ran F ) )
6 3 5 syl5bb
 |-  ( ( F '''' A ) = ~P U. ran F -> ( ( F '''' A ) e/ ran F <-> -. ~P U. ran F e. ran F ) )
7 2 6 mpbiri
 |-  ( ( F '''' A ) = ~P U. ran F -> ( F '''' A ) e/ ran F )
8 1 7 syl
 |-  ( -. F defAt A -> ( F '''' A ) e/ ran F )