Metamath Proof Explorer


Theorem dmafv2rnb

Description: The alternate function value at a class A is defined, i.e., in the range of the function, iff A is in the domain of the function. (Contributed by AV, 3-Sep-2022)

Ref Expression
Assertion dmafv2rnb ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐴 ∈ dom 𝐹 ↔ ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 ) )

Proof

Step Hyp Ref Expression
1 iba ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐴 ∈ dom 𝐹 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ) )
2 df-dfat ( 𝐹 defAt 𝐴 ↔ ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) )
3 dfatafv2rnb ( 𝐹 defAt 𝐴 ↔ ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 )
4 2 3 bitr3i ( ( 𝐴 ∈ dom 𝐹 ∧ Fun ( 𝐹 ↾ { 𝐴 } ) ) ↔ ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 )
5 1 4 bitrdi ( Fun ( 𝐹 ↾ { 𝐴 } ) → ( 𝐴 ∈ dom 𝐹 ↔ ( 𝐹 '''' 𝐴 ) ∈ ran 𝐹 ) )