Metamath Proof Explorer


Theorem funin

Description: The intersection with a function is a function. Exercise 14(a) of Enderton p. 53. (Contributed by NM, 19-Mar-2004) (Proof shortened by Andrew Salmon, 17-Sep-2011)

Ref Expression
Assertion funin
|- ( Fun F -> Fun ( F i^i G ) )

Proof

Step Hyp Ref Expression
1 inss1
 |-  ( F i^i G ) C_ F
2 funss
 |-  ( ( F i^i G ) C_ F -> ( Fun F -> Fun ( F i^i G ) ) )
3 1 2 ax-mp
 |-  ( Fun F -> Fun ( F i^i G ) )