| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqcom |
|- ( y = ( F ` x ) <-> ( F ` x ) = y ) |
| 2 |
|
tz6.12i |
|- ( y =/= (/) -> ( ( F ` x ) = y -> x F y ) ) |
| 3 |
1 2
|
biimtrid |
|- ( y =/= (/) -> ( y = ( F ` x ) -> x F y ) ) |
| 4 |
3
|
eximdv |
|- ( y =/= (/) -> ( E. x y = ( F ` x ) -> E. x x F y ) ) |
| 5 |
|
vex |
|- y e. _V |
| 6 |
5
|
elrn |
|- ( y e. ran F <-> E. x x F y ) |
| 7 |
4 6
|
imbitrrdi |
|- ( y =/= (/) -> ( E. x y = ( F ` x ) -> y e. ran F ) ) |
| 8 |
7
|
com12 |
|- ( E. x y = ( F ` x ) -> ( y =/= (/) -> y e. ran F ) ) |
| 9 |
8
|
necon1bd |
|- ( E. x y = ( F ` x ) -> ( -. y e. ran F -> y = (/) ) ) |
| 10 |
|
velsn |
|- ( y e. { (/) } <-> y = (/) ) |
| 11 |
9 10
|
imbitrrdi |
|- ( E. x y = ( F ` x ) -> ( -. y e. ran F -> y e. { (/) } ) ) |
| 12 |
11
|
orrd |
|- ( E. x y = ( F ` x ) -> ( y e. ran F \/ y e. { (/) } ) ) |
| 13 |
12
|
ss2abi |
|- { y | E. x y = ( F ` x ) } C_ { y | ( y e. ran F \/ y e. { (/) } ) } |
| 14 |
|
df-un |
|- ( ran F u. { (/) } ) = { y | ( y e. ran F \/ y e. { (/) } ) } |
| 15 |
13 14
|
sseqtrri |
|- { y | E. x y = ( F ` x ) } C_ ( ran F u. { (/) } ) |