Metamath Proof Explorer


Theorem fviunfun

Description: The function value of an indexed union is the value of one of the indexed functions. (Contributed by AV, 4-Nov-2023)

Ref Expression
Hypothesis fviunfun.u
|- U = U_ i e. I ( F ` i )
Assertion fviunfun
|- ( ( Fun U /\ J e. I /\ X e. dom ( F ` J ) ) -> ( U ` X ) = ( ( F ` J ) ` X ) )

Proof

Step Hyp Ref Expression
1 fviunfun.u
 |-  U = U_ i e. I ( F ` i )
2 fveq2
 |-  ( i = J -> ( F ` i ) = ( F ` J ) )
3 2 ssiun2s
 |-  ( J e. I -> ( F ` J ) C_ U_ i e. I ( F ` i ) )
4 3 1 sseqtrrdi
 |-  ( J e. I -> ( F ` J ) C_ U )
5 funssfv
 |-  ( ( Fun U /\ ( F ` J ) C_ U /\ X e. dom ( F ` J ) ) -> ( U ` X ) = ( ( F ` J ) ` X ) )
6 4 5 syl3an2
 |-  ( ( Fun U /\ J e. I /\ X e. dom ( F ` J ) ) -> ( U ` X ) = ( ( F ` J ) ` X ) )