Metamath Proof Explorer


Theorem fvopabf4g

Description: Function value of an operator abstraction whose domain is a set of functions with given domain and range. (Contributed by Jeff Madsen, 1-Dec-2009) (Revised by Mario Carneiro, 12-Sep-2015)

Ref Expression
Hypotheses fvopabf4g.1
|- C e. _V
fvopabf4g.2
|- ( x = A -> B = C )
fvopabf4g.3
|- F = ( x e. ( R ^m D ) |-> B )
Assertion fvopabf4g
|- ( ( D e. X /\ R e. Y /\ A : D --> R ) -> ( F ` A ) = C )

Proof

Step Hyp Ref Expression
1 fvopabf4g.1
 |-  C e. _V
2 fvopabf4g.2
 |-  ( x = A -> B = C )
3 fvopabf4g.3
 |-  F = ( x e. ( R ^m D ) |-> B )
4 elmapg
 |-  ( ( R e. Y /\ D e. X ) -> ( A e. ( R ^m D ) <-> A : D --> R ) )
5 4 ancoms
 |-  ( ( D e. X /\ R e. Y ) -> ( A e. ( R ^m D ) <-> A : D --> R ) )
6 5 biimp3ar
 |-  ( ( D e. X /\ R e. Y /\ A : D --> R ) -> A e. ( R ^m D ) )
7 2 3 1 fvmpt
 |-  ( A e. ( R ^m D ) -> ( F ` A ) = C )
8 6 7 syl
 |-  ( ( D e. X /\ R e. Y /\ A : D --> R ) -> ( F ` A ) = C )