Description: Function value of an operator abstraction whose domain is a set of functions with given domain and range. (Contributed by Jeff Madsen, 1-Dec-2009) (Revised by Mario Carneiro, 12-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fvopabf4g.1 | |- C e. _V |
|
| fvopabf4g.2 | |- ( x = A -> B = C ) |
||
| fvopabf4g.3 | |- F = ( x e. ( R ^m D ) |-> B ) |
||
| Assertion | fvopabf4g | |- ( ( D e. X /\ R e. Y /\ A : D --> R ) -> ( F ` A ) = C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvopabf4g.1 | |- C e. _V |
|
| 2 | fvopabf4g.2 | |- ( x = A -> B = C ) |
|
| 3 | fvopabf4g.3 | |- F = ( x e. ( R ^m D ) |-> B ) |
|
| 4 | elmapg | |- ( ( R e. Y /\ D e. X ) -> ( A e. ( R ^m D ) <-> A : D --> R ) ) |
|
| 5 | 4 | ancoms | |- ( ( D e. X /\ R e. Y ) -> ( A e. ( R ^m D ) <-> A : D --> R ) ) |
| 6 | 5 | biimp3ar | |- ( ( D e. X /\ R e. Y /\ A : D --> R ) -> A e. ( R ^m D ) ) |
| 7 | 2 3 1 | fvmpt | |- ( A e. ( R ^m D ) -> ( F ` A ) = C ) |
| 8 | 6 7 | syl | |- ( ( D e. X /\ R e. Y /\ A : D --> R ) -> ( F ` A ) = C ) |