| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvovco.1 |
|- ( ph -> F : X --> ( V X. W ) ) |
| 2 |
|
fvovco.2 |
|- ( ph -> Y e. X ) |
| 3 |
1 2
|
ffvelcdmd |
|- ( ph -> ( F ` Y ) e. ( V X. W ) ) |
| 4 |
|
1st2nd2 |
|- ( ( F ` Y ) e. ( V X. W ) -> ( F ` Y ) = <. ( 1st ` ( F ` Y ) ) , ( 2nd ` ( F ` Y ) ) >. ) |
| 5 |
3 4
|
syl |
|- ( ph -> ( F ` Y ) = <. ( 1st ` ( F ` Y ) ) , ( 2nd ` ( F ` Y ) ) >. ) |
| 6 |
5
|
fveq2d |
|- ( ph -> ( O ` ( F ` Y ) ) = ( O ` <. ( 1st ` ( F ` Y ) ) , ( 2nd ` ( F ` Y ) ) >. ) ) |
| 7 |
|
fvco3 |
|- ( ( F : X --> ( V X. W ) /\ Y e. X ) -> ( ( O o. F ) ` Y ) = ( O ` ( F ` Y ) ) ) |
| 8 |
1 2 7
|
syl2anc |
|- ( ph -> ( ( O o. F ) ` Y ) = ( O ` ( F ` Y ) ) ) |
| 9 |
|
df-ov |
|- ( ( 1st ` ( F ` Y ) ) O ( 2nd ` ( F ` Y ) ) ) = ( O ` <. ( 1st ` ( F ` Y ) ) , ( 2nd ` ( F ` Y ) ) >. ) |
| 10 |
9
|
a1i |
|- ( ph -> ( ( 1st ` ( F ` Y ) ) O ( 2nd ` ( F ` Y ) ) ) = ( O ` <. ( 1st ` ( F ` Y ) ) , ( 2nd ` ( F ` Y ) ) >. ) ) |
| 11 |
6 8 10
|
3eqtr4d |
|- ( ph -> ( ( O o. F ) ` Y ) = ( ( 1st ` ( F ` Y ) ) O ( 2nd ` ( F ` Y ) ) ) ) |