Description: A set is a subset of its image under the reflexive-transitive closure. (Contributed by RP, 22-Jul-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | fvrtrcllb1d.r | |- ( ph -> R e. _V ) |
|
Assertion | fvrtrcllb1d | |- ( ph -> R C_ ( t* ` R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvrtrcllb1d.r | |- ( ph -> R e. _V ) |
|
2 | dfrtrcl3 | |- t* = ( r e. _V |-> U_ n e. NN0 ( r ^r n ) ) |
|
3 | nn0ex | |- NN0 e. _V |
|
4 | 3 | a1i | |- ( ph -> NN0 e. _V ) |
5 | 1nn0 | |- 1 e. NN0 |
|
6 | 5 | a1i | |- ( ph -> 1 e. NN0 ) |
7 | 2 1 4 6 | fvmptiunrelexplb1d | |- ( ph -> R C_ ( t* ` R ) ) |