Metamath Proof Explorer


Theorem fvrtrcllb1d

Description: A set is a subset of its image under the reflexive-transitive closure. (Contributed by RP, 22-Jul-2020)

Ref Expression
Hypothesis fvrtrcllb1d.r
|- ( ph -> R e. _V )
Assertion fvrtrcllb1d
|- ( ph -> R C_ ( t* ` R ) )

Proof

Step Hyp Ref Expression
1 fvrtrcllb1d.r
 |-  ( ph -> R e. _V )
2 dfrtrcl3
 |-  t* = ( r e. _V |-> U_ n e. NN0 ( r ^r n ) )
3 nn0ex
 |-  NN0 e. _V
4 3 a1i
 |-  ( ph -> NN0 e. _V )
5 1nn0
 |-  1 e. NN0
6 5 a1i
 |-  ( ph -> 1 e. NN0 )
7 2 1 4 6 fvmptiunrelexplb1d
 |-  ( ph -> R C_ ( t* ` R ) )