Metamath Proof Explorer


Theorem fvmptiunrelexplb1d

Description: If the indexed union ranges over the first power of the relation, then the relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020)

Ref Expression
Hypotheses fvmptiunrelexplb1d.c
|- C = ( r e. _V |-> U_ n e. N ( r ^r n ) )
fvmptiunrelexplb1d.r
|- ( ph -> R e. _V )
fvmptiunrelexplb1d.n
|- ( ph -> N e. _V )
fvmptiunrelexplb1d.1
|- ( ph -> 1 e. N )
Assertion fvmptiunrelexplb1d
|- ( ph -> R C_ ( C ` R ) )

Proof

Step Hyp Ref Expression
1 fvmptiunrelexplb1d.c
 |-  C = ( r e. _V |-> U_ n e. N ( r ^r n ) )
2 fvmptiunrelexplb1d.r
 |-  ( ph -> R e. _V )
3 fvmptiunrelexplb1d.n
 |-  ( ph -> N e. _V )
4 fvmptiunrelexplb1d.1
 |-  ( ph -> 1 e. N )
5 oveq2
 |-  ( n = 1 -> ( R ^r n ) = ( R ^r 1 ) )
6 5 ssiun2s
 |-  ( 1 e. N -> ( R ^r 1 ) C_ U_ n e. N ( R ^r n ) )
7 4 6 syl
 |-  ( ph -> ( R ^r 1 ) C_ U_ n e. N ( R ^r n ) )
8 2 relexp1d
 |-  ( ph -> ( R ^r 1 ) = R )
9 oveq1
 |-  ( r = R -> ( r ^r n ) = ( R ^r n ) )
10 9 iuneq2d
 |-  ( r = R -> U_ n e. N ( r ^r n ) = U_ n e. N ( R ^r n ) )
11 ovex
 |-  ( R ^r n ) e. _V
12 11 rgenw
 |-  A. n e. N ( R ^r n ) e. _V
13 iunexg
 |-  ( ( N e. _V /\ A. n e. N ( R ^r n ) e. _V ) -> U_ n e. N ( R ^r n ) e. _V )
14 3 12 13 sylancl
 |-  ( ph -> U_ n e. N ( R ^r n ) e. _V )
15 1 10 2 14 fvmptd3
 |-  ( ph -> ( C ` R ) = U_ n e. N ( R ^r n ) )
16 15 eqcomd
 |-  ( ph -> U_ n e. N ( R ^r n ) = ( C ` R ) )
17 7 8 16 3sstr3d
 |-  ( ph -> R C_ ( C ` R ) )