Metamath Proof Explorer


Theorem fvmptiunrelexplb1d

Description: If the indexed union ranges over the first power of the relation, then the relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020)

Ref Expression
Hypotheses fvmptiunrelexplb1d.c C = r V n N r r n
fvmptiunrelexplb1d.r φ R V
fvmptiunrelexplb1d.n φ N V
fvmptiunrelexplb1d.1 φ 1 N
Assertion fvmptiunrelexplb1d φ R C R

Proof

Step Hyp Ref Expression
1 fvmptiunrelexplb1d.c C = r V n N r r n
2 fvmptiunrelexplb1d.r φ R V
3 fvmptiunrelexplb1d.n φ N V
4 fvmptiunrelexplb1d.1 φ 1 N
5 oveq2 n = 1 R r n = R r 1
6 5 ssiun2s 1 N R r 1 n N R r n
7 4 6 syl φ R r 1 n N R r n
8 2 relexp1d φ R r 1 = R
9 oveq1 r = R r r n = R r n
10 9 iuneq2d r = R n N r r n = n N R r n
11 ovex R r n V
12 11 rgenw n N R r n V
13 iunexg N V n N R r n V n N R r n V
14 3 12 13 sylancl φ n N R r n V
15 1 10 2 14 fvmptd3 φ C R = n N R r n
16 15 eqcomd φ n N R r n = C R
17 7 8 16 3sstr3d φ R C R